Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Brain Pathol ; : e13263, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38659387

RESUMO

Multiple sclerosis (MS) is unsurpassed for its clinical and pathological hetherogeneity, but the biological determinants of this variability are unknown. HLA-DRB1*15, the main genetic risk factor for MS, influences the severity and distribution of MS pathology. This study set out to unravel the molecular determinants of the heterogeneity of MS pathology in relation to HLA-DRB1*15 status. Shotgun proteomics from a discovery cohort of MS spinal cord samples segregated by HLA-DRB*15 status revealed overexpression of the extracellular matrix (ECM) proteins, biglycan, decorin, and prolargin in HLA-DRB*15-positive cases, adding to established literature on a role of ECM proteins in MS pathology that has heretofore lacked systematic pathological validation. These findings informed a neuropathological characterisation of these proteins in a large autopsy cohort of 41 MS cases (18 HLA-DRB1*15-positive and 23 HLA-DRB1*15-negative), and seven non-neurological controls on motor cortical, cervical and lumbar spinal cord tissue. Biglycan and decorin demonstrate a striking perivascular expression pattern in controls that is reduced in MS (-36.5%, p = 0.036 and - 24.7%, p = 0.039; respectively) in lesional and non-lesional areas. A concomitant increase in diffuse parenchymal accumulation of biglycan and decorin is seen in MS (p = 0.015 and p = 0.001, respectively), particularly in HLA-DRB1*15-positive cases (p = 0.007 and p = 0.046, respectively). Prolargin shows a faint parenchymal pattern in controls that is markedly increased in MS cases where a perivascular deposition pattern is observed (motor cortex +97.5%, p = 0.001; cervical cord +49.1%, p = 0.016). Our findings point to ECM proteins and the vascular interface playing a central role in MS pathology within and outside the plaque area. As ECM proteins are known potent pro-inflammatory molecules, their parenchymal accumulation may contribute to disease severity. This study brings to light novel factors that may contribute to the heterogeneity of the topographical variation of MS pathology.

2.
Acta Neuropathol ; 147(1): 51, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38460050

RESUMO

Spinal cord pathology is a major determinant of irreversible disability in progressive multiple sclerosis. The demyelinated lesion is a cardinal feature. The well-characterised anatomy of the spinal cord and new analytic approaches allows the systematic study of lesion topography and its extent of inflammatory activity unveiling new insights into disease pathogenesis. We studied cervical, thoracic, and lumbar spinal cord tissue from 119 pathologically confirmed multiple sclerosis cases. Immunohistochemistry was used to detect demyelination (PLP) and classify lesional inflammatory activity (CD68). Prevalence and distribution of demyelination, staged by lesion activity, was determined and topographical maps were created to identify patterns of lesion prevalence and distribution using mixed models and permutation-based voxelwise analysis. 460 lesions were observed throughout the spinal cord with 76.5% of cases demonstrating at least 1 lesion. The cervical level was preferentially affected by lesions. 58.3% of lesions were inflammatory with 87.9% of cases harbouring at least 1 inflammatory lesion. Topographically, lesions consistently affected the dorsal and lateral columns with relative sparing of subpial areas in a distribution mirroring the vascular network. The presence of spinal cord lesions and the proportion of active lesions related strongly with clinical disease milestones, including time from onset to wheelchair and onset to death. We demonstrate that spinal cord demyelination is common, highly inflammatory, has a predilection for the cervical level, and relates to clinical disability. The topography of lesions in the dorsal and lateral columns and relative sparing of subpial areas points to a role of the vasculature in lesion pathogenesis, suggesting short-range cell infiltration from the blood and signaling molecules circulating in the perivascular space incite lesion development. These findings challenge the notion that end-stage progressive multiple sclerosis is 'burnt out' and an outside-in lesional gradient predominates in the spinal cord. Taken together, this study provides support for long-term targeting of inflammatory demyelination in the spinal cord and nominates vascular dysfunction as a potential target for new therapeutic approaches to limit irreversible disability.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Humanos , Esclerose Múltipla/patologia , Estudos Retrospectivos , Prevalência , Medula Espinal/patologia , Esclerose Múltipla Crônica Progressiva/patologia , Imageamento por Ressonância Magnética
4.
Front Neurol ; 14: 1199491, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396778

RESUMO

The maintenance of adequate blood supply and vascular integrity is fundamental to ensure cerebral function. A wide range of studies report vascular dysfunction in white matter dementias, a group of cerebral disorders characterized by substantial white matter damage in the brain leading to cognitive impairment. Despite recent advances in imaging, the contribution of vascular-specific regional alterations in white matter dementia has been not extensively reviewed. First, we present an overview of the main components of the vascular system involved in the maintenance of brain function, modulation of cerebral blood flow and integrity of the blood-brain barrier in the healthy brain and during aging. Second, we review the regional contribution of cerebral blood flow and blood-brain barrier disturbances in the pathogenesis of three distinct conditions: the archetypal white matter predominant neurocognitive dementia that is vascular dementia, a neuroinflammatory predominant disease (multiple sclerosis) and a neurodegenerative predominant disease (Alzheimer's). Finally, we then examine the shared landscape of vascular dysfunction in white matter dementia. By emphasizing the involvement of vascular dysfunction in the white matter, we put forward a hypothetical map of vascular dysfunction during disease-specific progression to guide future research aimed to improve diagnostics and facilitate the development of tailored therapies.

5.
Clin Med (Lond) ; 23(3): 219-227, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37236792

RESUMO

This narrative review provides an overview of the posterior circulation and the clinical features of common posterior circulation stroke (PCS) syndromes in the posterior arterial territories and how to distinguish them from mimics. We outline the hyperacute management of patients with suspected PCS with emphasis on how to identify those who are likely to benefit from intervention based on imaging findings. Finally, we review advances in treatment options, including developments in endovascular thrombectomy (EVT) and intravenous thrombolysis (IVT), and the principles of medical management and indications for neurosurgery. Observational and randomised clinical trial data have been equivocal regarding EVT in PCS, but more recent studies strongly support its efficacy. There have been concomitant advances in imaging of posterior stroke to guide optimal patient selection for thrombectomy. Recent evidence suggests that clinicians should have a heightened suspicion of posterior circulation events with the resultant implementation of timely, evidence-based management.


Assuntos
Isquemia Encefálica , Procedimentos Endovasculares , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/complicações , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/terapia , Isquemia Encefálica/complicações , Procedimentos Endovasculares/métodos , Trombectomia/métodos , AVC Isquêmico/complicações , Resultado do Tratamento , Terapia Trombolítica/métodos
6.
Neuropathol Appl Neurobiol ; 49(3): e12904, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37020385

RESUMO

AIMS: Selective neuronal vulnerability of hippocampal Cornu Ammonis (CA)-1 neurons is a pathological hallmark of Alzheimer's disease (AD) with an unknown underlying mechanism. We interrogated the expression of tuberous sclerosis complex-1 (TSC1; hamartin) and mTOR-related proteins in hippocampal CA1 and CA3 subfields. METHODS: A human post-mortem cohort of mild (n = 7) and severe (n = 10) AD and non-neurological controls (n = 9) was used for quantitative and semi-quantitative analyses. We also developed an in vitro TSC1 knockdown model in rat hippocampal neurons, and transcriptomic analyses of TSC1 knockdown neuronal cultures were performed. RESULTS: We found a selective increase of TSC1 cytoplasmic inclusions in human AD CA1 neurons with hyperactivation of one of TSC1's downstream targets, the mammalian target of rapamycin complex-1 (mTORC1), suggesting that TSC1 is no longer active in AD. TSC1 knockdown experiments showed accelerated cell death independent of amyloid-beta toxicity. Transcriptomic analyses of TSC1 knockdown neuronal cultures revealed signatures that were significantly enriched for AD-related pathways. CONCLUSIONS: Our combined data point to TSC1 dysregulation as a key driver of selective neuronal vulnerability in the AD hippocampus. Future work aimed at identifying targets amenable to therapeutic manipulation is urgently needed to halt selective neurodegeneration, and by extension, debilitating cognitive impairment characteristic of AD.


Assuntos
Doença de Alzheimer , Esclerose Tuberosa , Humanos , Ratos , Animais , Doença de Alzheimer/patologia , Esclerose Tuberosa/metabolismo , Hipocampo/patologia , Serina-Treonina Quinases TOR/metabolismo , Neurônios/patologia , Mamíferos/metabolismo
7.
Brain Commun ; 5(2): fcad072, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056475

RESUMO

Cerebral cortical inflammation and neurodegeneration are hallmark pathological features of multiple sclerosis that contribute to irreversible neurological disability. While the reason for nerve cell death is unknown, the pathogenic inflammatory role of infiltrating lymphocytes is likely an important contributor. The nuclear receptor-related factor 1 counteracts inflammation in animal models of multiple sclerosis, and protects against neuronal loss in other neurodegenerative disorders, but its expression in post-mortem multiple sclerosis tissue is not known. This study aims to investigate the nuclear receptor-related factor 1 expression in multiple sclerosis motor cortex and evaluate its relationship with motor cortical pathology. To accomplish this, an autopsy cohort of pathologically confirmed multiple sclerosis (n = 46), and control (n = 11) cases was used, where the nuclear receptor-related factor 1 expression was related to neuronal and lymphocytic densities. Motor cortical nuclear receptor-related factor 1 was overexpressed in multiple sclerosis compared to control cases. Increased nuclear receptor-related factor 1 expression positively associated with neuronal densities, especially when present in nucleus of neurons, and associated with decreased CD8+ cytotoxic lymphocyte density. Our findings expand the current knowledge on nuclear receptor-related factor 1 in neurological diseases, and support the hypothesis that nuclear receptor-related factor 1 may play a dual neuroprotective role in multiple sclerosis by influencing inflammatory and neurodegenerative processes. Future studies elucidating the influence of nuclear receptor-related factor 1 on these processes in multiple sclerosis may cast light onto novel targets that may be modulated to alter clinical outcome.

8.
Glia ; 71(8): 1847-1869, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36994950

RESUMO

Cerebral blood flow (CBF) is important for the maintenance of brain function and its dysregulation has been implicated in Alzheimer's disease (AD). Microglia associations with capillaries suggest they may play a role in the regulation of CBF or the blood-brain-barrier (BBB). We explored the relationship between microglia and pericytes, a vessel-resident cell type that has a major role in the control of CBF and maintenance of the BBB, discovering a spatially distinct subset of microglia that closely associate with pericytes. We termed these pericyte-associated microglia (PEM). PEM are present throughout the brain and spinal cord in NG2DsRed × CX3 CR1+/GFP mice, and in the human frontal cortex. Using in vivo two-photon microscopy, we found microglia residing adjacent to pericytes at all levels of the capillary tree and found they can maintain their position for at least 28 days. PEM can associate with pericytes lacking astroglial endfeet coverage and capillary vessel width is increased beneath pericytes with or without an associated PEM, but capillary width decreases if a pericyte loses a PEM. Deletion of the microglia fractalkine receptor (CX3 CR1) did not disrupt the association between pericytes and PEM. Finally, we found the proportion of microglia that are PEM declines in the superior frontal gyrus in AD. In summary, we identify microglia that specifically associate with pericytes and find these are reduced in number in AD, which may be a novel mechanism contributing to vascular dysfunction in neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Pericitos , Camundongos , Humanos , Animais , Pericitos/metabolismo , Camundongos Transgênicos , Microglia , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo , Doença de Alzheimer/metabolismo
9.
Clin Med (Lond) ; 23(3): 219-227, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614774

RESUMO

This narrative review provides an overview of the posterior circulation and the clinical features of common posterior circulation stroke (PCS) syndromes in the posterior arterial territories and how to distinguish them from mimics. We outline the hyperacute management of patients with suspected PCS with emphasis on how to identify those who are likely to benefit from intervention based on imaging findings. Finally, we review advances in treatment options, including developments in endovascular thrombectomy (EVT) and intravenous thrombolysis (IVT), and the principles of medical management and indications for neurosurgery. Observational and randomised clinical trial data have been equivocal regarding EVT in PCS, but more recent studies strongly support its efficacy. There have been concomitant advances in imaging of posterior stroke to guide optimal patient selection for thrombectomy. Recent evidence suggests that clinicians should have a heightened suspicion of posterior circulation events with the resultant implementation of timely, evidence-based management.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/terapia , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/terapia , Administração Intravenosa , Seleção de Pacientes
10.
Mult Scler Relat Disord ; 63: 103917, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35671673

RESUMO

BACKGROUND: Dysfunction in upper limb (UL) function has been reported as an important indicator for disease progression in persons with multiple sclerosis (PwMS), thus a relevant outcome in clinical trials. However, standard assessment of UL function is limited to Nine-Hole Peg Test (NHPT) which assesses fine dexterity. This study aimed to deeply endophenotype UL involvement in PwMS and identify the most accurate set of measures needed to capture the complexity of UL dysfunction in the activities of daily living (ADL). METHODS: 257 PwMS underwent an extensive UL assessment using standardized measures of grip strength and endurance, coordination, vibratory and tactile sensation, dexterity, capacity and functionality. Limitation in ADL was defined from an objective perspective using a timed test (Test d'Evaluation de la performance des Membres Supérieurs des Personnes Âgées: TEMPA) and from a subjective perspective using a questionnaire (Disabilities of the Arm, Shoulder and Hand: DASH). Disease severity subgroups were compared utilizing the Kruskal-Wallis test and frequencies determined the prevalence of abnormal UL for each measure. The Jonckheere-Terpstra test compared tested variables with disease severity. Then Receiver operating characteristic (ROC) curve analysis was used to test the accuracy of each tested variable in defining abnormality in the TEMPA and DASH. Cut-off scores were calculated using the Youden index. The predictive value of various tests over TEMPA and DASH were tested using a linear regression analysis. RESULTS: UL dysfunction was highly prevalent in all the modalities tested, even in participants with no/mild disability. Box and Block Test (BBT), finger-nose test (FNT), and NHPT were independently selected with ROC analyses as the most accurate measures in detecting abnormalities in TEMPA and DASH. In multivariate regression models, BBT and FNT, and NHPT all contributed to predicting TEMPA (adj. R2 0.795, P < 0.001), while only BBT and FNT predicted DASH. CONCLUSIONS: UL dysfunction is highly prevalent in PwMS, even when global disability is mild. BBT and FNT are time-efficient and cost-effective measures that complement the NHPT for more precise monitoring of PwMS at all disease stages.


Assuntos
Pessoas com Deficiência , Esclerose Múltipla , Atividades Cotidianas , Força da Mão , Humanos , Esclerose Múltipla/complicações , Esclerose Múltipla/diagnóstico , Extremidade Superior
11.
Nat Neurosci ; 25(7): 944-955, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35726057

RESUMO

Progressive multiple sclerosis (MS) is characterized by unrelenting neurodegeneration, which causes cumulative disability and is refractory to current treatments. Drug development to prevent disease progression is an urgent clinical need yet is constrained by an incomplete understanding of its complex pathogenesis. Using spatial transcriptomics and proteomics on fresh-frozen human MS brain tissue, we identified multicellular mechanisms of progressive MS pathogenesis and traced their origin in relation to spatially distributed stages of neurodegeneration. By resolving ligand-receptor interactions in local microenvironments, we discovered defunct trophic and anti-inflammatory intercellular communications within areas of early neuronal decline. Proteins associated with neuronal damage in patient samples showed mechanistic concordance with published in vivo knockdown and central nervous system (CNS) disease models, supporting their causal role and value as potential therapeutic targets in progressive MS. Our findings provide a new framework for drug development strategies, rooted in an understanding of the complex cellular and signaling dynamics in human diseased tissue that facilitate this debilitating disease.


Assuntos
Doenças do Sistema Nervoso Central , Esclerose Múltipla , Doenças do Sistema Nervoso Central/complicações , Progressão da Doença , Humanos , Esclerose Múltipla/patologia , Neurônios/metabolismo , Proteômica
12.
Brain ; 145(7): 2276-2292, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35551356

RESUMO

To match the metabolic demands of the brain, mechanisms have evolved to couple neuronal activity to vasodilation, thus increasing local cerebral blood flow and delivery of oxygen and glucose to active neurons. Rather than relying on metabolic feedback signals such as the consumption of oxygen or glucose, the main signalling pathways rely on the release of vasoactive molecules by neurons and astrocytes, which act on contractile cells. Vascular smooth muscle cells and pericytes are the contractile cells associated with arterioles and capillaries, respectively, which relax and induce vasodilation. Much progress has been made in understanding the complex signalling pathways of neurovascular coupling, but issues such as the contributions of capillary pericytes and astrocyte calcium signal remain contentious. Study of neurovascular coupling mechanisms is especially important as cerebral blood flow dysregulation is a prominent feature of Alzheimer's disease. In this article we will discuss developments and controversies in the understanding of neurovascular coupling and finish by discussing current knowledge concerning neurovascular uncoupling in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Acoplamento Neurovascular , Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Encéfalo , Circulação Cerebrovascular/fisiologia , Glucose/metabolismo , Humanos , Acoplamento Neurovascular/fisiologia , Oxigênio , Pericitos/fisiologia
13.
Brain ; 145(12): 4308-4319, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-35134111

RESUMO

The anterior optic pathway is one of the preferential sites of involvement in CNS inflammatory demyelinating diseases, such as multiple sclerosis and neuromyelitis optica, with optic neuritis being a common presenting symptom. What is more, optic nerve involvement in these diseases is often subclinical, with optical coherence tomography demonstrating progressive neuroretinal thinning in the absence of optic neuritis. The pathological substrate for these findings is poorly understood and requires investigation. We had access to post-mortem tissue samples of optic nerves, chiasms and tracts from 29 multiple sclerosis (mean age 59.5, range 25-84 years; 73 samples), six neuromyelitis optica spectrum disorders (mean age 56, range 18-84 years; 22 samples), six acute disseminated encephalomyelitis (mean age 25, range 10-39 years; 12 samples) cases and five non-neurological controls (mean age 55.2, range 44-64 years; 16 samples). Formalin-fixed paraffin-embedded samples were immunolabelled for myelin, inflammation (microglial/macrophage, T- and B-cells, complement), acute axonal injury and astrocytes. We assessed the extent and distribution of these markers along the anterior optic pathway for each case in all compartments (i.e. parenchymal, perivascular and meningeal), where relevant. Demyelinated plaques were classified as active based on established criteria. In multiple sclerosis, demyelination was present in 82.8% of cases, of which 75% showed activity. Microglia/macrophage and lymphocyte inflammation were frequently found both in the parenchymal and meningeal compartments in non-demyelinated regions. Acute axonal injury affected 41.4% of cases and correlated with extent of inflammatory activity in each compartment, even in cases that died at advanced age with over 20 years of disease duration. An antero-posterior gradient of anterior optic pathway involvement was observed with optic nerves being most severely affected by inflammation and acute axonal injury compared with the optic tract, where a higher proportion of remyelinated plaques were seen. In neuromyelitis optica spectrum disorder, cases with a history of optic neuritis had extensive demyelination and lost aquaporin-4 reactivity. In contrast, those without prior optic neuritis did not have demyelination but rather diffuse microglial/macrophage, T- and B-lymphocyte inflammation in both parenchymal and meningeal compartments, and acute axonal injury was present in 75% of cases. Acute demyelinating encephalomyelitis featured intense inflammation, and perivenular demyelination in 33% of cases. Our findings suggest that chronic inflammation is frequent and leads to neurodegeneration in multiple sclerosis and neuromyelitis optica, regardless of disease stage. The chronic inflammation and subsequent neurodegeneration occurring along the optic pathway broadens the plaque-centred view of these diseases and partly explains the progressive neuroretinal changes observed in optic coherence tomography studies.


Assuntos
Esclerose Múltipla , Neuromielite Óptica , Neurite Óptica , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Adolescente , Adulto Jovem , Criança , Neuromielite Óptica/patologia , Nervo Óptico/patologia , Neurite Óptica/patologia , Esclerose Múltipla/patologia , Inflamação/patologia
14.
J Neurol Neurosurg Psychiatry ; 93(3): 246-253, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35086942

RESUMO

Given conflicting findings in epidemiologic studies, we determined the relative contributions of different neuropathologies to the excess risk of cognitive decline in diabetes mellitus (DM) through a systematic review of the literature. Included studies compared subjects with and without DM and reported neuropathological outcomes accounting for cognition at death. Data on Alzheimer's disease (AD) pathology, cerebrovascular disease and non-vascular, non-AD pathology were extracted from each study. Eleven studies (n=6 prospective cohorts, n=5 retrospective post-mortem series, total n=6330) met inclusion criteria. All 11 studies quantified AD changes and 10/11 measured cerebrovascular disease: macroscopic lesions (n=9), microinfarcts (n=8), cerebral amyloid angiopathy (CAA, n=7), lacunes (n=6), white matter disease (n=5), haemorrhages (n=4), microbleeds (n=1), hippocampal microvasculature (n=1). Other pathology was infrequently examined. No study reported increased AD pathology in DM, three studies showed a decrease (n=872) and four (n= 4018) showed no difference, after adjustment for cognition at death. No study reported reduced cerebrovascular pathology in DM. Three studies (n=2345) reported an increase in large infarcts, lacunes and microinfarcts. One study found lower cognitive scores in DM compared to non-DM subjects despite similar cerebrovascular and AD-pathology load suggesting contributions from other neuropathological processes. In conclusion, lack of an association between DM and AD-related neuropathology was consistent across studies, irrespective of methodology. In contrast to AD, DM was associated with increased large and small vessel disease. Data on other pathologies such as non-AD neurodegeneration, and blood-brain-barrier breakdown were lacking. Further studies evaluating relative contributions of different neuropathologies to the excess risk of DM are needed.


Assuntos
Cognição/fisiologia , Disfunção Cognitiva/patologia , Complicações do Diabetes/patologia , Diabetes Mellitus/patologia , Idoso de 80 Anos ou mais , Encéfalo/patologia , Disfunção Cognitiva/etiologia , Feminino , Humanos , Masculino
15.
Brain Pathol ; 32(4): e13041, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34904300

RESUMO

Cortical tissue injury is common in multiple sclerosis (MS) and associates with disability progression. We have previously shown that HLA-DRB1*15 genotype status associates with the extent of cortical inflammatory pathology. In the current study, we sought to examine the influence of HLA-DRB1*15 on relationships between inflammation and neurodegeneration in MS. Human post-mortem MS cases (n = 47) and controls (n = 10) were used. Adjacent sections of motor cortex were stained for microglia (Iba1+, CD68+, TMEM119+), lymphocytes (CD3+, CD8+), GFAP+ astrocytes, and neurons (NeuN+). A subset of MS cases (n = 20) and controls (n = 7) were double-labeled for neurofilament and glutamic acid decarboxylase 65/67 (GAD+) to assess the extent of the inhibitory synaptic loss. In MS cases, microglial protein expression positively correlated with neuron density (Iba1+: r = 0.548, p < 0.001, CD68+: r = 0.498, p = 0.001, TMEM119+ r = 0.437, p = 0.003). This finding was restricted to MS cases not carrying HLA-DRB1*15. Evidence of a 14% reduction in inhibitory synapses in MS was detected (MS: 0.299 ± 0.006 synapses/µm2 neuronal membrane versus control: 0.348 ± 0.009 synapses/µm2 neuronal membrane, p = 0.005). Neurons expressing inhibitory synapses were 24% smaller in MS cases compared to the control (MS: 403 ± 15 µm2 versus control: 531 ± 29 µm2 , p = 0.001), a finding driven by HLA-DRB1*15+ cases (15+: 376 ± 21 µm2 vs. 15-: 432 ± 22 µm2 , p = 0.018). Taken together, our results demonstrate that HLA-DRB1*15 modulates the relationship between microglial inflammation, inhibitory synapses, and neuronal density in the MS cortex.


Assuntos
Cadeias HLA-DRB1 , Esclerose Múltipla , Substância Cinzenta/patologia , Cadeias HLA-DRB1/genética , Cadeias HLA-DRB1/metabolismo , Humanos , Inflamação/patologia , Microglia/patologia , Esclerose Múltipla/patologia , Neurônios/patologia
16.
J Neurol Sci ; 432: 120056, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34823869

RESUMO

The global tally of neurological disorders is exponentially rising and yet effective therapies for most remain evasive. There is a great deal of research into novel small molecules, immunotherapies and gene therapies to fill this therapeutic gap. We believe greater focus on plasma exchange as a research and clinical tool may provide useful insight into pathological mechanisms and effective treatment strategies. Plasma exchange has been traditionally used to treat antibody-mediated neurological diseases, such as myasthenia gravis and neuromyelitis optica, but there could be much wider future potential uses in neurology. Plasma exchange is not antibody specific, as it also removes a variety of other plasma-soluble factors, including age-related and disease-associated neurotoxic proteins, such as fibrinogen and amyloid. As research develops into the role of blood-brain barrier and immunological alterations in diseases not typically regarded as immune-driven, interest in neurotoxic plasma proteins grows. Here, we highlight that plasma exchange may have uses outside of antibody-mediated neurological diseases, by removing neurotoxic proteins from the systemic circulation.


Assuntos
Miastenia Gravis , Neurologia , Neuromielite Óptica , Humanos , Miastenia Gravis/terapia , Neuromielite Óptica/terapia , Troca Plasmática , Plasmaferese
17.
Mult Scler ; 28(3): 359-368, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34100315

RESUMO

OBJECTIVE: To evaluate the impact of temporal increase of female to male (F:M) sex ratio for persons with multiple sclerosis (MS) on the familial risk (empiric recurrence risks or RRs) for biological relatives of affected individuals. METHODS: Detailed family histories were systematically obtained from people with MS attending the University of British Columbia Hospital MS Clinic. The study cohort was born in 1970 or more recently. Data were collected from 1 September 2015 to 31 January 2019. The study was designed to allow only one proband per family. Age-corrected RRs for biological relatives of probands were calculated based on a modification of the maximum-likelihood approach. RESULTS: Data analyses were possible for 746 unique probands (531 females; 215 males) and 19,585 of their biological relatives. RRs were temporally impacted. CONCLUSION: Both genetic sharing and environmental factors are important in determining RRs. It appears that there is an increase in MS risk due to environmental factors in later life (i.e. not shared family environment). Environmental exposures in genetically predisposed individuals might be driving the MS risk. The increase in F:M ratio of RRs for sisters/brothers of female probands over time is likely due to environmental differences.


Assuntos
Esclerose Múltipla , Família , Feminino , Predisposição Genética para Doença , Humanos , Funções Verossimilhança , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/epidemiologia , Esclerose Múltipla/genética , Risco , Fatores de Risco , Razão de Masculinidade
18.
Neurology ; 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400582

RESUMO

Medical students need to understand core neuroscience principles as a foundation for their required clinical experiences in neurology. In fact, they need a solid neuroscience foundation for their clinical experiences in all other medical disciplines also, because the nervous system plays such a critical role in the function of every organ system. Due to the rapid pace of neuroscience discoveries, it is unrealistic to expect students to master the entire field. It is also unnecessary, as students can expect to have ready access to electronic reference sources no matter where they practice. In the pre-clerkship phase of medical school, the focus should be on providing students with the foundational knowledge to use those resources effectively and interpret them correctly. This article describes an organizational framework for teaching the essential neuroscience background needed by all physicians. This is particularly germane at a time when many medical schools are re-assessing traditional practices and instituting curricular changes such as competency-based approaches, earlier clinical immersion, and increased emphasis on active learning. This article reviews factors that should be considered when developing the pre-clerkship neuroscience curriculum, including goals and objectives for the curriculum, the general topics to include, teaching and assessment methodology, who should direct the course, and the areas of expertise of faculty who might be enlisted as teachers or content experts. These guidelines were developed by a work group of experienced educators appointed by the Undergraduate Education Subcommittee (UES) of the American Academy of Neurology (AAN). They were then successively reviewed, edited, and approved by the entire UES, the AAN Education Committee, and the AAN Board of Directors.

19.
Neuroimage ; 238: 118225, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34062267

RESUMO

Magnetic Resonance Spectroscopy (MRS) allows for the non-invasive quantification of neurochemicals and has the potential to differentiate between the pathologically distinct diseases, multiple sclerosis (MS) and AQP4Ab-positive neuromyelitis optica spectrum disorder (AQP4Ab-NMOSD). In this study we characterised the metabolite profiles of brain lesions in 11 MS and 4 AQP4Ab-NMOSD patients using an optimised MRS methodology at ultra-high field strength (7T) incorporating correction for T2 water relaxation differences between lesioned and normal tissue. MS metabolite results were in keeping with the existing literature: total N-acetylaspartate (NAA) was lower in lesions compared to normal appearing brain white matter (NAWM) with reciprocal findings for myo-Inositol. An unexpected subtlety revealed by our technique was that total NAA differences were likely driven by NAA-glutamate (NAAG), a ubiquitous CNS molecule with functions quite distinct from NAA though commonly quantified together with NAA in MRS studies as total NAA. Surprisingly, AQP4Ab-NMOSD showed no significant differences for total NAA, NAA, NAAG or myo-Inositol between lesion and NAWM sites, nor were there any differences between MS and AQP4Ab-NMOSD for a priori hypotheses. Post-hoc testing revealed a significant correlation between NAWM Ins:NAA and disability (as measured by EDSS) for disease groups combined, driven by the AP4Ab-NMOSD group. Utilising an optimised MRS methodology, our study highlights some under-explored subtleties in MRS profiles, such as the absence of myo-Inositol concentration differences in AQP4Ab-NMOSD brain lesions versus NAWM and the potential influence of NAAG differences between lesions and normal appearing white matter in MS.


Assuntos
Química Encefálica , Espectroscopia de Ressonância Magnética/métodos , Esclerose Múltipla Recidivante-Remitente/metabolismo , Neuromielite Óptica/metabolismo , Adulto , Aquaporina 4/imunologia , Ácido Aspártico/análogos & derivados , Ácido Aspártico/análise , Autoanticorpos/análise , Autoantígenos/imunologia , Feminino , Gliose/diagnóstico por imagem , Gliose/metabolismo , Gliose/patologia , Glutamatos/análise , Humanos , Inositol/análise , Espectroscopia de Ressonância Magnética/instrumentação , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Proteínas do Tecido Nervoso/imunologia , Neuromielite Óptica/diagnóstico por imagem , Neuromielite Óptica/imunologia , Neuromielite Óptica/patologia , Adulto Jovem
20.
Brain ; 143(10): 2998-3012, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32875311

RESUMO

Vascular comorbidities have a deleterious impact on multiple sclerosis clinical outcomes but it is unclear whether this is mediated by an excess of extracranial vascular disease (i.e. atherosclerosis) and/or of cerebral small vessel disease or worse multiple sclerosis pathology. To address these questions, a study using a unique post-mortem cohort wherein whole body autopsy reports and brain tissue were available for interrogation was established. Whole body autopsy reports were used to develop a global score of systemic vascular disease that included aorta and coronary artery atheroma, cardiac hypertensive disease, myocardial infarction and ischaemic stroke. The score was applied to 85 multiple sclerosis cases (46 females, age range 39 to 84 years, median 62.0 years) and 68 control cases. Post-mortem brain material from a subset of the multiple sclerosis (n = 42; age range 39-84 years, median 61.5 years) and control (n = 39) cases was selected for detailed neuropathological study. For each case, formalin-fixed paraffin-embedded tissue from the frontal and occipital white matter, basal ganglia and pons was used to obtain a global cerebral small vessel disease score that captured the presence and/or severity of arteriolosclerosis, periarteriolar space dilatation, haemosiderin leakage, microinfarcts, and microbleeds. The extent of multiple sclerosis-related pathology (focal demyelination and inflammation) was characterized in the multiple sclerosis cases. Regression models were used to investigate the influence of disease status on systemic vascular disease and cerebral small vessel disease scores and, in the multiple sclerosis group, the relationship between multiple sclerosis-related pathology and both vascular scores. We show that: (i) systemic cardiovascular burden, and specifically atherosclerosis, is lower and cerebral small vessel disease is higher in multiple sclerosis cases that die at younger ages compared with control subjects; (ii) the association between systemic vascular disease and cerebral small vessel disease is stronger in patients with multiple sclerosis compared with control subjects; and (iii) periarteriolar changes, including periarteriolar space dilatation, haemosiderin deposition and inflammation, are key features of multiple sclerosis pathology outside the classic demyelinating lesion. Our data argue against a common primary trigger for atherosclerosis and multiple sclerosis but suggest that an excess burden of cerebral small vessel disease in multiple sclerosis may explain the link between vascular comorbidity and accelerated irreversibility disability.


Assuntos
Autopsia/métodos , Doenças de Pequenos Vasos Cerebrais/epidemiologia , Doenças de Pequenos Vasos Cerebrais/patologia , Esclerose Múltipla/epidemiologia , Esclerose Múltipla/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...